MAHAMAYA INSTITUTE OF MEDICAL AND TECHNICAL SCIENCE, NUAPADA ## LESSON PLAN | Discipline :
MECHANICAL ENGG | Semester : 4 TH | Name of the Teaching Faculty: ER. MICHAEL SUVEER | |---------------------------------|---|--| | Subject: FLUID
MECHANICS | No. of days/per week class allotted: 04 | Semester From date: 10.03.2022 To Date: 10.06.2022 No. of Weeks: 15 | | Week | Class Day | Theory / Practical Topics | | 1 ST | 1 ST Ch-) | Define fluid and its properties | | | 2 ND | Description of fluid properties like Density, Specific weight | | | 3 RD | Description of fluid properties like specific gravity, specific volume | | | ₄ TH | solve simple problems | | 2 ND | 1 ST | solve simple problems. | | | 2 ND | Definitions and Units of Dynamic viscosity | | | 3 RD | Definitions and Units of Kinematic viscosity | | | 4 TH | Definitions and Units of surface tension and capillary | | 3 RD | 1 ST Ch-2 | Definitions and units of fluid pressure, | | | 2 ND | Definitions and units of pressure intensity and pressure head | | | 3 RD | Statement of Pascal's Law. | | | 4 TH | Concept of atmospheric pressure, gauge pressure | | 4 TH | 1 ST | Concept of vacuum pressure and absolute pressure | | | 2 ND | Pressure measuring instruments | | | | Manometers (Simple and Differential) | | | 3 RD | Bourdon tube pressure gauge(Simple Numerical) | | | 4 TH | Solve simple problems on Manometer | | 5 TH | 1 ST | Definition of hydrostatic pressure | | | 2 ND | Total pressure and centre of pressure on | | | 2 | immersed bodies(Horizontal bodies) | | | 3 RD | Total pressure and centre of pressure on | | | | immersed bodies(Vertical bodies) | | | 4 TH | solve simple problems | | | 1 ST | solve simple problems | | | 2 ND | Archimedes 'principle, concept of buoyancy, | | 6 TH | 2RD | meta center and meta centric height | |------------------|-------------------|--| | | 3*** | (Definition only) | | | 4 TH | Concept of floatation | | 7 TH | 1ST | Types of fluid flow | | | 2 ND | Continuity equation(Statement | | | 3RD | Continuity equation(proof for one dimensional flow) | | | 4 TH | Bernoulli's theorem(Statement) | | 8 TH | 1ST | Bernoulli's theorem(proof) | | | 2 ND | Applications and limitations of Bernoulli's theorem (Venturimeter, | | | 2
2RD | nitot tube). Solve simple problems | | | Δ TH | Solve simple problems | | | 1ST | Define orifice, Flow through orifice | | 9 TH | 2ND | Orifices coefficient | | | 2 RD | The relation between the orifice coefficients | | | 3 | Classifications of notches & weirs | | | 4 TH | Discharge over a rectangular notch or weir | | 10 ^{TR} | 1 ST | | | | 2 ND | Discharge over a triangular notch or weir | | | 3 RD | Simple problems | | | 4 TH | Simple problems | | 11 TH | 1 ST | Definition of pipe | | | 2 ND | Loss of energy in pipes. | | | 3 RD | Head loss due to friction: Darcy's | | | 4 TH | Head loss due to friction: Chezy's | | 12 TH | 1 ST | Solve Problems using Darcy's | | | 2 ND | Solve Problems using Chezy's | | | 3 RD | Solve Problems using Chezy's | | | 4 TH | Hydraulic gradient definition | | 13 TH | 1 ST | total gradient line | | | 2 ND | Simple problems | | | 3 RD | Impact of jet on fixed vertical flat plates | | | 4 TH | Impact of jet on moving vertical flat plates | | | 1 ST | Derivation of work done on series of vanes | | | 2 ND . | condition for maximum | | 14 TH | | efficiency. | | 15 TH | 3 RD | Impact of jet on moving curved vanes | | | 4 TH | Impact of jet on moving curved vanes (continued) | | | 1 ST | illustration using velocity triangles | | | 2 ND | derivation of work done, | | | 3 RD | derivation of efficiencies | | | 4 TH | Important question discussion |