MAHAMAYA INSTITUTE OF MEDICAL AND TECHNICAL SCIENCE, NUAPADA

LESSON PLAN

Discipline : MECHANICAL ENGG	Semester : 4 TH	Name of the Teaching Faculty: ER. MICHAEL SUVEER
Subject: FLUID MECHANICS	No. of days/per week class allotted: 04	Semester From date: 10.03.2022 To Date: 10.06.2022 No. of Weeks: 15
Week	Class Day	Theory / Practical Topics
1 ST	1 ST Ch-)	Define fluid and its properties
	2 ND	Description of fluid properties like Density, Specific weight
	3 RD	Description of fluid properties like specific gravity, specific volume
	₄ TH	solve simple problems
2 ND	1 ST	solve simple problems.
	2 ND	Definitions and Units of Dynamic viscosity
	3 RD	Definitions and Units of Kinematic viscosity
	4 TH	Definitions and Units of surface tension and capillary
3 RD	1 ST Ch-2	Definitions and units of fluid pressure,
	2 ND	Definitions and units of pressure intensity and pressure head
	3 RD	Statement of Pascal's Law.
	4 TH	Concept of atmospheric pressure, gauge pressure
4 TH	1 ST	Concept of vacuum pressure and absolute pressure
	2 ND	Pressure measuring instruments
		Manometers (Simple and Differential)
	3 RD	Bourdon tube pressure gauge(Simple Numerical)
	4 TH	Solve simple problems on Manometer
5 TH	1 ST	Definition of hydrostatic pressure
	2 ND	Total pressure and centre of pressure on
	2	immersed bodies(Horizontal bodies)
	3 RD	Total pressure and centre of pressure on
		immersed bodies(Vertical bodies)
	4 TH	solve simple problems
	1 ST	solve simple problems
	2 ND	Archimedes 'principle, concept of buoyancy,

6 TH	2RD	meta center and meta centric height
	3***	(Definition only)
	4 TH	Concept of floatation
7 TH	1ST	Types of fluid flow
	2 ND	Continuity equation(Statement
	3RD	Continuity equation(proof for one dimensional flow)
	4 TH	Bernoulli's theorem(Statement)
8 TH	1ST	Bernoulli's theorem(proof)
	2 ND	Applications and limitations of Bernoulli's theorem (Venturimeter,
	2 2RD	nitot tube). Solve simple problems
	Δ TH	Solve simple problems
	1ST	Define orifice, Flow through orifice
9 TH	2ND	Orifices coefficient
	2 RD	The relation between the orifice coefficients
	3	Classifications of notches & weirs
	4 TH	Discharge over a rectangular notch or weir
10 ^{TR}	1 ST	
	2 ND	Discharge over a triangular notch or weir
	3 RD	Simple problems
	4 TH	Simple problems
11 TH	1 ST	Definition of pipe
	2 ND	Loss of energy in pipes.
	3 RD	Head loss due to friction: Darcy's
	4 TH	Head loss due to friction: Chezy's
12 TH	1 ST	Solve Problems using Darcy's
	2 ND	Solve Problems using Chezy's
	3 RD	Solve Problems using Chezy's
	4 TH	Hydraulic gradient definition
13 TH	1 ST	total gradient line
	2 ND	Simple problems
	3 RD	Impact of jet on fixed vertical flat plates
	4 TH	Impact of jet on moving vertical flat plates
	1 ST	Derivation of work done on series of vanes
	2 ND .	condition for maximum
14 TH		efficiency.
15 TH	3 RD	Impact of jet on moving curved vanes
	4 TH	Impact of jet on moving curved vanes (continued)
	1 ST	illustration using velocity triangles
	2 ND	derivation of work done,
	3 RD	derivation of efficiencies
	4 TH	Important question discussion